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Airport Surface Channels

* Motivation
— Crivilian aviation anticipates both a near and long-
term need for new communications capabilities
— MLS extension band, 5.091-5.15 GHz, primary
candidate for deploying new communication system
for airport surface

ACAST Channel Characterization project

— Measurement campaigns at several airports (CLE,
MIA, JFK, Tamiami, Burke Lake, and OU), 2005-06

— Stochastic channel models developed to emulate the
physical propagation environment

— Channel models useful to simulate different system
performance under realistic conditions
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802.16¢e Features

* Designed for NLOS applications
« OFDMA-based, with scalable channel bandwidth
* High throughput
—Up to 100 Mbps for 20 MHz channel bandwidth
* Large coverage area
—Up to 50 km for stationary case (directional antennas)

* Quality of service (QoS) support

—Different service levels
—Grant/request based MAC

* Mobility support




Airport Environment Description

* Airport surface area classification
— LOS-0: Open areas, €.g., runways, some taxiways
— NLOS-S: mostly NLOS w/dominant Specular
component plus low energy multipath components,
€.g., near terminals
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Tapped Delay Line Channel Model

» Tapped delay line structure
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— 7,(1) 1s a 2-state, first-order Markov model
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Criteria for Channel Models

e Number of taps (L)
— Criterion 1: Mean RMS delay spreads L=|E[c.] /T, ]
— Criterion 2: Maximum duration of the CIR

e Aggregate energy
— Criterion 1: For NLOS, 95% aggregate energy
— Criterion 2: All the taps, 1.e., 100% aggregate energy

* Non-Stationary/Stationary

— Criterion 1: Persistence process and correlation
among taps

— Criterion 2: No Persistence process, uncorrelated taps
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Different Channel Models

* Model -1 (M1)
— Number of taps: Mean RMS-DS
— Aggregate Energy: 95%
— Non-Stationary channel model

* Model -2 (M2)

— Number of taps: Maximum duration of CIR
— Aggregate Energy: 100%
— Non-Stationary channel model

* Model -3 (M3)
— Number of taps: Maximum duration of CIR
— Aggregate Energy: 100%
— Stationary channel model
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Example Model [M1, Large Airport, 10]
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Comparing Models with Data

* Comparison of RMS-DS statistics for Model-2, Model-
3 w/those of data for [Large Airport, 10 MHz, NLOS]
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Comparing Models with Data (2)

« Comparison of Delay Window statistics for Model-2,
Model-3 w/those of data for [Large Airport, 10 MHz,

NLOS]
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Comparing Models with Data (3)

e “Distance” measures to compare pdfs of models and data

— Measured data denoted D, simulated model denoted S
— Kullback-Leibler (KL) & Histogram Intersection (HI)

M
KL = ZDZ. log 2[?" j KL =0 is perfect match

i=1 i

M
HI = Z min(D,,S,); HI=1is perfect match

i=1
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Communication System Description

SS

802.16¢ system structure (from SS to BS)
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Communication System Description (2)

 802.16 defined subcarrier allocation algorithms

— Distributed permutation (PUSC/FUSC), mandatory
— AMC permutation, optional

Subcarrier Index

> Each subchannel in
o O OO uplink PUSC has six
distributed tiles,
Q Q Q Q determined by the
permutation defined
v Q Q in 802.16

Uplink PUSC tile structure




Channel Estimation Techniques

* As with many wireless standards, 802.16 does
not specify receiver processing
* One key algorithm 1s channel estimation (CE)

— CE 1: average pilot symbols in both 7" & F domains
— CE 2: average pilot symbols in 7"domain, and

linearly interpolate in / domain

— CE 3: linearly interpolate the pilot symbols in both 7°
& F domains
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OFDMA System Parameters

Channel Bandwidth (MHz)
FFT size N

Useful OFDMA Symbol Period T, (ps)
CP Duration (us)

OFDMA Symbol Period T (ps)
Maximum Channel Delay Spread T,, (us)
Number of Channel Taps

Doppler Frequency f, (Hz)

Number of Users




BER Performance

* BER vs. E,/N,, large airport NLOS M2 channel,
different estimationmotechniques, K=5 users
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* N=512, fp 0 = 300 Hz .

 All channel estimators
have worse performance y°
than perfect estimation
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BER Performance

* BER vs. E;/N, tor all airports using model M1
and best estimation techniques, K=5 users
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BER Performance

* BER vs. E;/N, for all airports using model M2
and best estimation techniques, K=5 users

* N=512, fp 0 = 300 Hz
 Performance best for 10"
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* Performance worst for
Large Airport NLOS *
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OFDMA Scheduling Parameters

Parameters for Two Service Classes

Required BER 10-2 10-2
Required Date Rate R, (Mbps) 2 Not Guaranteed
Number of Users First 50% Last 50%

* QoS defined by (uncoded) error probability <10
 User classes

* Guaranteed performance (GP)
 “Best effort” (BE)

* For GP users, BER takes priority over data rate

—Data rate limited 1f BER requirement can not be met

_ _ 20
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“Aggressive” Scheduling Algorithm

For each GP user:

a) Find the best available subcarrier

b) Determine modulation scheme m,, =|log,(1+y,,/T)];
if no modulation scheme can satisfy BER
requirement, scheduling considered done for this user

c) Repeat a), b) until the date requirement 1s satisfied

For each BE user:

d) Find best available subcarrier for the user with lowest
data rate, and determine the corresponding
modulation scheme

¢) Repeat d) until all data subcarriers are used or BER
requirements can not be satisfied (I" =—In(5BER)/1.5)
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Throughput Results

eroughput usmg M2 models all airports, perfect CE




Summary

 Presented “worst case” channel models for different

alrport sizes
— Multiple models presented for each airport

— Compared stationary and non-stationary model
implementations

» Simulated BER performance of 802.16¢ using “worst

case” channel models

— Analyzed performance of different channel estimation
techniques for these channel models

* Simulated throughput performance of 802.16¢ using
“worst case” channel models of different airports using
an “aggressive” scheduling algorithm
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Future Work

* Complete BER and throughput performance
evaluations for channel models of other regions,
e.g., NLOS-S and LOS-O

e Evaluate performance enhancement techniques,

e.g., diversity antennas
* Implement 1nitial WiMax wireless network
“test-bed” to measure performance




